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SUMMARY

CABINS

DflL5737

The report presents information on the stress problems in the
analysis of pressurized cabins of high-altitude aircraft not met with
in other fields of stress analysis relating to aircraft. The mherial
may be roughly divided into shell problems and plate problems, the
former being concerned with the curved walls of the cabin or pressure
vessel and the latter being concerned with small rectangular panels of
its walls, framed by stiffeners, but not necessarily plane.

INTRODUCTION

4

The analysis of pressurized cabins of high-altitude aircraft pre-

# sents particular stress problems not usually met with in other fields
of stress analysis relatimg to aircraft. It is the purpose of the
present report to gather information on these problems and to make it
easily accessible to aircraft engineers. Sow of the work in this field
is presented in references 1 to 10.

This report contains a choice of subjects taken from the theory of
plates and shells which is expected to be useful for the designer of
pressurized airplane cabins or similar lightweight pressure vessels.
This material maybe roughly divided into shell problems and plate
problems, the former being concerned with the curved walls of the cabin
or pressure vessel and the latter, with small rectangular panels of its
walls, framed by stiffeners, but not necessarily plane.

As far as shell problems are concerned, some use has been made of
a manuscript for a book OQ %tresses in Shells,” which the author is
preparing. (See reference 3.) The prospect that this book will be
available some time in 1952 makes it possible to discuss in the present
report several problems which are too complex to explain here in all
their mathematical details.

The pressurized cabin is a rather new element in the airplane
h structure and will, in all probability, undergo future development. In

view of this situation, no attempt has been made to present anything
like a textbook on the subject giving time-tested methods for solving

w
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k

various problems, but rather an attempt has been made to show the general
lines of thought which have proved to be useful and to give suggestions
for their application. k

This investigation was carried out at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Comnittee for Aeronautics.
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SHELL PROBIEMS

Cylindrical Shell

Circular cylinder.- The fuselage of a high-altitude passenger plane
is USUally of circular cross section and is, for most of its lengtjh,
almost cylindrical. Some useful information regarding its strengthmay
be found, therefore, when a circular cylinder closed at both ends by
somq kind of bulkhead which permits the air pressure inside to be greater
than that outside (fig. 1) is considered. The pressure difference will
be called p.

For a homogeneous shell of thickness t the stresses produced by
this pressure are given by the well-known boiler formulas for hoop stress
ufl andaxial stress ax:

ad = pajt

}

(1)

ax = pa/2t
●

The shell of a pressure cabin is reinforced by rings and stringers,
which participate in carrying the load. The stringers will always be
spaced closely enough to make the distribution of the longitudinal stress

on the skin between them practically uniform. With the rings this may
be different. The limiting case, that is, that they too are closely
spaced, will be considered here.

In finding the stresses, start from the internal forces per unit
length of section acting in the shell. When a slice of length Ax = 1
is cut out of the shell (fig. 2), the hoop force

N@ = pa

is found, and when the force pma2 acting on each bulkhead is distributed
over the circumference 2na of the cylinder, the longitudinal force

Iix=*pa

transmitted by the unit length of a section right across the shell is
found.
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If the shell

found by dividing

NACA TN 2612

has no stiffeners, the stresses a# and ax are

N~ and Nx by the wall thickness t, which, of

course, results in th boiler formulas (1). In the cabin shell are
rings of cross section AR at distance Z from each other and stringers

of cross section AL at an angular distance 8 (see fig. 3). If these

areas are distributed over the cross section of the skin, the effective
thicknesses

(2)

are introduced; however, the stresses rJ# and tsx are not simply the

quotients N$/tfl and Nx/tx (see, e.g., reference 1). The reason for

this is apparent when one considers the fact that the skin is in a two-
dimensional state of stress and therefore for the same strain its stress
is different from that in the stiffeners.

Let the stresses in the skin be u# and Ux as before, in the

stringers, UL, and in the riIIgS, ~R. Then Hooke’s law will yield the

following relations for the hoop strain E@ and the longitudinal

strain ‘x:

‘W=W - ‘=x

= UR

EGX = CYx- VU
fl

= (yL

E being Youngls modulus and V Poisson’s ratio.

On the other hand, the definition of the internal forces is:

Ng=tU@+~UR

Nx
AL

‘tflx+_&UL 1

(3a)

(3b)

(4)
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the four equations (3) and (4) for the stresses,

pa
=—

2

- +)tpx + v% (t$ + tx - t)

2tx+v(t& -t)

(1- v2)t@x + v%(t@+ tx - q

[(1- v%x + v - Vtrfxq Ngf
~R =

(1 )@-#t ~+v~(tfj+% - t)

_ pa 2(1 - Va)tx - V(1 - a)t

21
( - v2)t@tx + V%(t@ + tx - t)

tflx +-~ (tx - qqf
=x = ( )&hv2tx + v2t (t@ + tx - t)

pa t@+2v(tx -t)

t)= ~ (1 - v2)t#tx + V%(tp + tx -

~L El- %gj +V%]Nx- Vtqj
=

(1- Vqqjtx + v*t(t$ + tx - t) ‘

pa ( - ,a)q - ,(2 - V)t
=—

21
( - V:)tfix + V%(t@ + tx - t)

5
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8

When the rings are far apart, these formulas are no longer appli-
cable. The problem must then be split, with the shell without rings
considered first and the Mluence of the rings introduced afterward
(see section entitled “Interactionbetween Shell and Rings”). When
there are no rings tfi= t, and the formulas are simplified considerably:

pa(l - 2V) + Vpa
ax =

2tx T

6L s ‘1- 2~)pa
2tx

It appears that fJL is always smaller by a factor 1 - 2V than it

would be if it were obtained by simply distributfig Nx

section. For the skin stress ax the factor depends on

AL/abt, and if one writes

ax =k~
x

the factor k will be as shown in figure 4.
boiler formulas are valid, and ax = o.5u@.-

(6a)

(6b)

(6c)

over the whole

the ratio

For AL/a5t = O the

For AL/a5t = 1.0, the

diagram shows ax = O.ha@. The difference between these two values

of Ux is small, but both are much less than the hoop stress. This

is very desirable since the over-all bending of the fuselage due to air
forces acting on the control surfaces produces additional stresses ax

which must be superimposed on the stress ax due to cabin pressure.

Since the stringers take an important share of the axial load, it
is not good practice to interrupt them at the rings. Care should be
taken to insure th8t the forces carried by the stringers can go straight
through from one bulkhead to the other, or to the end of the cabin shell.

Double cylinders.- The circular cross section is certainly the best
one, both for aerodynamic and structural reasons. However, it has some
practical disadvantages when used as a passenger cabin. Most serio~
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a

is the fact that a horizontal floor must necessarilybe built in,

3 requiring additional weight and leaving beneath it space which is not
easily used.

This situation is improved by a cross section which, with some
exaggeration, is shown in figure ~. It consists of parts of two circles
amd a straight horizontal tie between them.

Begin with a discussion of the weight of this structure. Under the
action of an internal pressure p the hoop stresses in the upper cylin-

‘er “@l
and in the lower cylinder

‘#2
will be:

I-J2.$ 42

The stress in the tie follows from the equilibriumat its ends (fig. 6):
*

* ‘3t3 = ‘#ltl Cos al + a@@2 ‘Os ~

If t~, -tZ,and ts are chosen such that the three stresses are all

equal to the same value u given by the allowable stress in the material,

The material invested in the structure is givenby the area &

of its metallic cross section. The two circles contribute to it
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2t1al(fi-
[

CLl)+ 2t2a2(fi- CL2)= ~ 2a12(fi- al) + 2~2(Yc - q~

and the tie contributes

2t3c = 2~(aI cos al + ~ cos ~)c

Now

c = al sin al

= a2 sin a2

and hence

2 ~(a12 cos al sin al + a222t3c = ~ Cos a2 sin a2
)

(. ~a12 sin 2CL1+ a22 sin 2aJ

Summing up the three parts, the total metallic cross section is found
to be:

Am =
[(

2$8~2Yt
1-al+z sin 2al) + a<(fi - ~ + $ sin *

1

On the other hand, the area of the hollow cross section Ah

describes the useful space in the fuselage. It is

(&=a12e al + +j sin 2a1
)(
+ a22 n -

)
*+~sin2*

It is seen that the ratio of the two areas

t
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does not depend u~n the particular choice of the dimensions of the

Q cross section. For a simple circular cylinder of radius a there is
obtained by similar reasoning:

and hence

as before. This indicates that for the same inside space the samek
structural weight is required and one is freed from weight conaidera-
tiona when choosing that combination of al, a2, al, and cz2 which

-d seems best for other reasons The validity of this result is restricted
to cross sections where the tie acts in tension, and this is exactly the
configuration which is most interesting in aircraft construction. In
practical applications, of course, additional stresses will change the
picture to some extent, and the weight of different shapes will not be
equal, but t“heimportant fact remains that there is no first-order loss
or gain in choosing one or smother of the sections compared.

Interaction between Shell and Rings

Bending of a cylindrical shell.- If the rings are not spaced closely
enough to be considered as psrt of an anisotropic shell, the problem
illustrated by figure 7 must be treated. Cut the shell in the plane of
the ring and at its connection with the ring. The pressure p applied
to the shell will lead to a hoop strain G@ which may be found from

Hooke’s law (3) and formulas (6a) to (6b) and consequently will lead to
a radial displacement

‘o = ac
@

(pa2 1 -V2 V(l - 2V)
=—— -

Et 2tx )
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The ring receives no load and, therefore,
to close the gap between the ring and the
forces T
AR these

and hence

per unit length of the edges.

NACA TN 2612

*

has no deformation. In order
deformed shell, add shearing
In the ring of cross section ?

shearing forces produce the stress

2TaUR.—
AR

the radial displacement

~a2
wR.—

EAR
(7)

(More exactly, aal should be written instead of a2, where ~ is the

radius of the center line of the ring.)

For the shell, the force T is a transverse shear ~ which pro-
duces bending stresses. In order to find them, some details of the
theory of bending of an anisotropic cylinder must be developed. It ia
necessary to consider only the internal forces and moments shown on the
shell element in figure 8: The hoop force .N@, the bending moment ~~

and the transverse shear ~. They are all functions of x (f% ‘7))

as is the radial deflection w.

The forces end moments must satisfy the conditions of equilibrium
of the shell element. They yield two equations:

~=Qx

++w’o i
which, after elhnination of ~, give the relation:

(8a)

(8b)

n

v

d2~
a—

+ ‘d = O.... (9)
&2

The hoop force N@ produces a hoop strain ,G@ which nuiybe obtained from

equations (3a) and (5a) to (5c) with Nx = 0. This strain leads to a #

radial displacement
r
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x

tx - lqtx - t)
=I?a

@ Ettx

tx
The constant ~ = Et , which has the dimension of a force

tx - v2(tx - t)

per unit length, is the etiensional rigidity of the shell in the direc-
tion of the hoop forces. Figure 9 shows that, in the range of practical
interest, D@ is only slightly greater than Et, and it is safe to say

(lo)

The bending moment Mx produces a curvature d2w/dx2 of the generators.

If I is the moment of inertia of the cross section of a stringer and
the attached skin of width a~ divided by the distance a~ of the
stringers,

(n)

Here too the coefficient EI Is slightly influenced by the fact that the
skin has a two-dimensional stress system. This refinement of the theory
will not be discussed here. There is another circumstance, perhaps even
more serious, which will also be neglected here: The centroid of the
section to which I is referred is not exactly at the distance a from
the axis of the cylinder but at a somewhat shorter distance. This
influence may be studied with a more general set of eqyations, but since
the difference of the two radii is not great, it will probably not be
of first-order importance: however, it may be responsible for some
second-order effects which otherwise might not be explained.

By introducing the expressions for N$ and ~ into equation (9),

the differential equation of the problem is obtained:

~1 d%—+Et—=0
:2 (12)

~4

—
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The general
those which

mc~ m 2612

solution of this equation consists of four terms. Only
are symmetrical wi{h respect to the plane x

needed. They are:

w= q Cosh: Cos ~ + C2 sinh ~ sin ~

with

The boundary conditions at x = 2/2 are that the slope
zero and that the deflection must assume a certain value

will be discussed later.)

()dw = o
G x=2/2

wx=2/2 = ‘1

=0 are-

dw/dx must be
W~. (This

Introducing the solution here, Cl and C2 me found and then

w=

with

2@ 2px
Sillh~ COS ~) cosh ~ COS ~+ (cosh 13sin ~ -

133X Sin*Sinh p Cos p) Sinh —
1 1

. ..

u

1
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The internal forces can now be found easily. From equations (8a) and (11)
it follows that

~x d%=—
dx

=EI~

EtZwl

(

2px sin 2px +cosh ~ sin p cosh —
2 T= ‘2a2~(cosh j3Siti ~+ COs P sin ~)

2$X
Sinh p Cos p sinh—

)
~os 2j3x

2 T

For x = 7/2 this is the force T applied to the edge of the shell:

b EtZwl
T=-—

2a2p

f

Cosi+i - Cospp

(13)cosh ~ sinh ~ + cos f3sin fl

Conjoiningthis with the preceding formula

213Xs~ 2?cosh B sin f3cosh ~ 2f3x 2$x—+ sinhf3cosj3sinh ~cos~
G&=T

Introducing the solution w into equations
WI by T,

~=EI

= -T

(I-1) and (10) and expressing

sin ~ -
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and, adding the hoop force due to the press~e p,

N~=pa+E~

T* 1
=pa-

[
(cosh ~ Sin ~ +

z cosh2~ - COS2P

2px ~os 2px +
Si?lh~ COS ~) cosh ~

T

NACA TN 2612

(cosh ~ sin j3- sinh

The magnitude of the shearing force
for abbreviation, T = -kw~, where

Then the following deformations are

2W sin ~]
p Cos p) sinh-

L L-1

T still has to be found. Write,
k is defined by equation (13).

found: Under the action of the
internal pressmx-alone the shell has the deflection W. given at the
beginning of this-section, and the ring, none. The additional load T
bends the edge of the shell back, producing WI = -T/k, and the ring

has a positive displacement

Now, under the combined
radial displacement of shell

WR = 2Ta2jEAR as was seen earlier.

action of pressure p and shear T, the
and ring must be the sane

T
‘o-~=wR

4

?

From this equation

‘oT=—
2a2
—+*
~R
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Upon the introduction of W. and k this yields

(p.v2-v(l-2v)
2t ax

T= ) (14)

With the mmerical value of T from this formula, one may obtain from
the preceding formulas values for N# and ~. The complete solution

of the nchanical problem of the interaction of the shell and the rings
is now obtained.

The shear depends on many parameters, and no attempt has been made
here to represent formula (14) by diagrams.
of N@ ad ~ along a generator

However, the distribution
of the cylinder depends essentially

on s. When p is small.(closely spaced rings, heavy stringers), the
pictuxe looks so~what like figure 10(a), and the case where it is
adequate to represent the influence of the stringers by the effective
thickness t~ as defined by equation (2) is approached. But when ~

is great (rings far apart, light stringers), the internal forces are
like those sketched in figure 10(b): In this case the influence of each
ring is locally restrained.

Floating skin.- Ffcomfigure 10 it appears that there is not much

virtue in providing rings to help the skin carry the cabin pressure
because the skin alone can do that well enough and the rings only cause
trouble. The rings disturb the simple stress system considerably, and
the force 2T transmitted from the shell to the ring produces a highly
undesirable tensile stress in the rivets which connect the skin to the
ring.

However, the rings sre needed for many important purposes. They
help to introduce the local load gently into the shell, they support
the stringers against buckling, and they stiffen the shell as a whole
to prevent a collapse by large-scale buckling. The problem is, how
does one make the rings available for all these purposes without
introducing the forces T?

The solution is the floating skin. Its basic idea may be explained
from equation (14). If the rings are very weak, AR ~ O, the denomi-

nator of this formula becomes infinite, and T = O. The term 2/AR
comes from ~, equation (7), and represents the deformability of the

ring by a radial load T, or, more exactly, the radial displacement of
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those points where the ring is fixed to the shell (skin and stringers).
This deformability may be increased easily without weakening the ring.
It is only necessary to intersperse an elastic element between the ring
proper and the shell (including stringers) as it is indicated by the
sketch, figure 11. Formula (7) must thenbe replaced by

c being an elastic constant
connecting liti between ring
necessary to write

~a2
- .—+wR~

EAR

~a2
=—+cT
EAR

depending on the shape and size of the
and skin. In formula (14) it is then

instead of 2/AR and now there is the possibility of making the denomi. .W.
nator as great as desired. Of course, such a flexible connection is
only worth while if

increased by adding

When the cabin

the

the

denominator in equation

term Ec/a2. .

Doors and Windows

is under pressure, the door
closed, but it cannot be expe~ted that the door

(14) is appreciably

must, of course, be
panel will be very

efficient in transmitting hoop forces N@ or longitudinal forces- IIx

across the door opening. Both have to be carried around it by the door
frsme, and this disturbance of the smooth flow of forces will certainly
lead to an increase in structural weight. In order to
as small as possible, some details of the local stress
to be studied.

Since the door needs a frame, it is reasonable to
parts of this frame all around the shell as two of its

keep this increase
system will have

extend the lateral
rings. Outside of

the part of the fuselage limited by these rings the hoop force does not
meet with any obsttiction. The problem is, what must be done with the
forces which are interceptedby the sill and the head of the frame? With ●

the usual dimensions of fuselages and doors these forces are considerable.
A door frsme strong enough to resist them would be a heavy structure,

P
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but worse than that, it would not accept the load. It would deflect in
1 the direction of the pull, and the deflection would lead to a decrease

of the pull.

It seems wise, therefore, to allow the shell itself to do that which
it can do so easily and to give the horizontal metiers of the door frame
only that stiffness which is required to press the door firmly against
it, that is, bending stiffness against radial forces. It is necessary,
then, to solve the following mechanical problem (fig. 12): A cylindrical
shell extending over an angle CL<360° is ltiited by two circular rings
and by two straight end members. These end members have no rigidity
against bending in the tangential plane to the cylinder, but they have
enough cross section to be considered as inextensible for our purposes.
The shell is subJected to an internal pressure p.

The stress system set up under these conditions may be split into
two parts: One is a hoop force N@ = pa, acting everywhere (also on the

straight edge) and resisting to the load p; the other one is a system of
internal forces produced by an external load N@ = -pa applied to the

edge menibersand canceling there the force pa of the elementary solution.
b

The task which is now to be done is to find this second stress system.

w In the theory of shells it is shown that the tangential load -pa cannot
be carried by the shell without resorting to bending stresses. There are
different methods of treating this bending problem; this is a simple one.
Although its application in this case may not be entirely legitimate,
it will give a fair idea of what is happening, and that shouldbe enough.

The problem may be reduced to a differential equation for the
bending moment M@ (for the notations, see figs. 8and 12; for more

details see reference 2, p. 139, or reference 3):

Y ‘::: + (2+ V)%’’::: + ~=”+ (1+ 2v)~’’”:: + 2(2+ v)175”::+

+ (2 + V)M@”””

Here dots indicate derivatives with respect to @,
derivatives with respect to the dimensionless coordinate x/a, and
ia the shell pakameter

+L+@”” =

primes @dicate

t2
k =—

12a2
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It may easily be verified that

is a solution of the differential equation. Here h iS still an
arbitrary constant. Write

L
nfia=—
1

where n is a positive integer; the discussion will later be confined
to n=l.

When the solution is introduced into the differential equation, it
is found that m must satisfy a certain algebraic equation. After some
drastic simplifications (reference 4) it may be brought into the
following form:

(“?+1)%4+=L4. O
k

This equation has the complex solutions

(16)

with

When any one of the eight complex values m is introduced into the
formula for ~, one elementary solution is obtained. They all show a

variability in x-direction according to sin rim/2. The same factor will
appear in the corresponding hoop forces N$. When it is desired to use
these solutions to describe the stresses due to a uniform distribution

‘6=-pa
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.

of the hoop force on the edge # = 0, this distribution has to be
resolved into its harmonic components:

The discussion will be confined here to the first term of this series
which will show the essential features of the stress pattern. Corres-
pondingly, set n = 1.

The set of eight elementary solutions which is obtained from the
eight possible values of m may be replaced by an equivalent set of
eight linear combinations, each of which is a product of an exponential
and a trigonometric function of Kl$$ or K2@, where

Using a suitable set of boundary conditions to determine the constants C
with which these solutions must be multiplied, solutions for many cases
of loading and supporting the edge may be found. The full expression
for the bending ~ment ~ and the values of the displacements u (in

x-direction) and w (radi&ly outward) for the edge cp= O are given
here for

(1)

edge,

three important cases:

Normal forces N@ = F1 S~ $% applied to a free (unsupported)

9= - ~(~-+ .)~-’’d(cos tG# + ~ sin R-#)- J%@cos .l~sin ~

(17a)

with the displacements at the edge @ = O,

u= - *[F + ,)pc2 -1- Vkq Cos y
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w=~~[~+1)2,4+(1- 2.2)(~+ 1)~{’ + (2+ v - A2).~.,.~

(2) Shearing forces N@. = F2 COS ~, applied to a free edge,

with the displacements at the edge @ = O,

(1P)

(3) Combined action of a shearing force N#x = F3 COS ~ and a

transverse force %=
-lJ?3sin~, applied to a free edge

(17C)

with the displacements at the edge @ = O,

u=- $ p(q co’ ~

.

v
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Coming back to the original problem represented by figure 12, the
bending moment M@ may be

(equations (17a) to (17c))

F2, and F3. These can be

edge ~ = O.

The ftist harnmnic of

found by superposing the three solutions

with appropriate values of the constants Fl}

found from three boundary conditions at the

the load pa shown in figure 12 is
@ SinYCX.N~=-— In order to give

z
N@ this value, it is necessary

Yc
to ;et

4pa
Fl=-y

and this is the first of three conditions. The other two follow from
the deformation which the door frame imposes on the shell. Since the
cross section of this frame is assured to be large enough to neglect
axial deformations, u =0 at $ = O for the shell. Another assump-
tion formulated previously is that the door frame will not deflect
very much in the w-direction. Therefore, w = Oatfi = O for the
shell.

When u and w are expressed as sums of the contributions of Fl,

F2, and F3, according to the formulas given before, and set equal to

zero, there are two linear equations from which F2 and F3 may be

found. The result is as follows:

‘2 = --&FlqiF+ 1)K4 - (p+ 1)(1+ U?)p -

1-
1

2VL2 + (1 + 2V)L4

The bending moment ~ due to the combined action of

ad F3 can now be computed; going back through details of the theory
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which have not

tudinal force

NACA TN 2612

been reproduced here, the hoop force N@ and the longi-

Nx in the shell cam also be found.

This has been done for an illustrative example, where

L=6

l-V*= 14X 106
k

v =0.3

The results are @otted in figure 13 over the circumference of a cross
section through the fuselage.

This diagram shows the following features which are of practical
interest:

(1) The disturbance produced by the door opening is restricted to
a rather small part of the shell. At an angular distance of 30° from
the edge it has practically vanished.

(2) The disturbance in the hoop force _j_awithout importance, It
is only slightly higher locally than in the undisturbed part of the shell,

(3) There are considerable stresses in the x-direction. The forces
Nx shown in the diagram are, of course, additional to forces which may

exist from other causes. In particular, there is a zone of tensile stress
near the edge. When taken together with a compressive force in the
adjacent bar of the door frame, these stresses are comparable with bending
stresses in a beam of span 2, which receives the load N~ = pa from the –

undisturbed shell and is supported on the t_worings shown’in figure 12.

(4) The forces Nx are arranged in alternating tension and compres-
sion zones of approximately equal width and decreasing intensity. The
width is such that in usual fuselages it may be of the same order as the
distance between stringers. If stringers were placed at the zeros of Nx,

they would not influence our problem. This justifies the procedure used,
which is based on the assumption of an isotropic shell without stiffeners. .—

(5) If =1 additional Striwer w- provid.e~right at the IX* of Ifx, -

the stress distribution would, of course, be changed considerably. The
J
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essential effect of this measure would be beneficial: The stringer would
share the axial load with the shell. Therefore, it maybe suggested that.
only the width of the first tension zone
be provided at its center, that is, at a

door frame.

Bulkheads

be determined, and a good stringer

I
distance of 90° K1 from the

.

.

General formulas for shells of revolution.- A cylindrical pressure

cabin must be closed at its end by a bulkhead. This bulkhead may be
constructed as a flat wall built up of vertical and horizontal beams and
a metal sheet. The beams have to transmit the air pressure by bending
stresses to the circumference of the bulkhead, from where it can be
transferred to the cylindrical cabin wall. Since the total air pressure
on the Inil.kheadis a force of considerable magnitude, a flat bulkhead
will result in a heav construction, which should be avoided if possible.

The preferable shape of a bulkhead is that of a shell similar to a

boiler end. When the cabin has a circular cross section, such a bulk-
head will be a shell of revolution. As a basis for its stress analysis
a short account of the theory of such shells will be given here.

Figure 14 shows the middle surface of a shell of revolution; its
intersections with planes normal to its axis are parallel circles, and
its intersectionswith planes containing the axis are all equal to each
other and are called meridians. At all points of a parallel circle the
angle @ between its plane and a tangent to the meridian has the same
value and is therefore characteristic for this circle. The angle between
the plane of a meridian and the vertical will be called e. Since a
point of the shell is determined by the parallel and the meridian on
which it lies, the angles @ and 6’ may be used as coordinates on the
shell.

If the shell is cut along a parallel circle (fig. 15), the stresses
transmitted there can be found. As is usual in shell theory, equations
are not written for the stress but for the meridional force I’?@which

acts on the unit length of the ctrcle. This force has the direction of
the meridian. The resultant of all the meridional forces acting on one
parallel circle is horizontal and of the magnitude N (sin 9)2fi, and it

9
must be-equal to the resultant R . fir% of the air pressure. Eence

N=
. @R 2fl Sinfi

‘*
(18a)
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When the shell is cut along a meridian, internal forces, that is,
the hoop forces Ne, are found, but they are not the same at all ‘points

of the-meridian and, therefore, cannot be found as simply as N@ A
~–

shell element limited by”two adjacent meridians and two adjacent parallel
circles (fig. 16) has to be cut out. The sides of this element, which
are parts of meridians, have the length rl d@, where rl is the radius

of curvature of the meridian. The other two sides have the length r dO
(slightly different from each other because r is not the same on both
parallel circles). The equilibrium of the forces N~(rde), Ne@ld@):

and the air pressure p(r de)(rl d~) in the direction of a normal to the..
shell yields the equation

—

N~(rde)d@ +N9(r1 dj$)desinq =p(rdEJ)(rl dp)

The factor sin @ in the second term comes from the fact that the
resultant of the hoop forces lies in the plane of the parallel circle
snd hss to be projected on the
be simplified to

%
rl

Introducing N@ from equation

normal to the shell. The equation may

lie
+— sin@=p

r

(18a) into this equation,

( 18b)

Equations (18a) and (1.8b) are sufficient to find the internal forces N@

and Ne when the shape of the shell is known. In order to permit the

best use of the space in the pressure cabin and in the fuselage at its
rear, an ideal bulkhead should be as flat as possible. This might lead
to a bulkhead designed to meet the cylindrical cabin wall at an angle,
as shown in figure 17(a). At the edge of the bulkhead equation (18a) will
yield a certain value of the force N@ which, of course, must have the

direction of a tangent to the meridian, Now this force cannot be trans-
mitted to the cylinder because this shell can only resist a force Nx

having the direction of a generator. The difference, that is, the radial .
component of N , must be transmitted to a stiffening ring.

@
It leads

.
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there to a compressive force of considerable magnitude. The corresponding
w deformation, a decrease of the ring diameter, fits in no way to that of

the cylinder and no better to that of the bulkhead. Therefore, all the
trouble with bending stresses described in the section entitled “Bending
of a Cylindrical Shell” arises here again but in a much more serious
magnitude. The meridian of the bulkhead should, therefore, always end
with a tangent parallel to the generators of the cylindrical cabin wall.

At the center of the bulkhead r = O and @ =
and.18(b) become indefinite. If the msridian has a
curvsture rl at this point, then, in its vicinity

O, and formulas 18(a)
finite radius of
the relation

r= rl sin @

holds. Introducing it into eqyations (18), they yield

The tendency to make the bulkhead as flat

(18c)

as possible might lead to
a meridian with an extremely feeble curvature in the central part. In
the extreme case, for the curvature l/rl = 0, the stresses become infinite.

This is illustrated by figure 18. The meridian in the upper half is a

biquadratic parabola 3 4a x = r , and the diagrams of the forces N@

and Ne show the consequences of insufficient curvature of the shell.

The lower half of the figure shows how easily the situation can be
improved. Here the central part of the shell is replaced by a spherical
segment, and at once the stresses are reduced to a moderate magnitude.

It may be mentioned that the meridian chosen for this example does
not fulfill the condition of a smooth transition to a cylinder, and,
therefore, cannot be recommended even in the improved form, but the
essential effect shown in figure 18 is, of course, true for any other
shape with insufficient curvature.

Ellipsoidal bulkhead.- An oblate ellipsoid (fig. 19) used as a

bulkhead provides a good compromise between the desire to avoid dead
angles and dark corners and the necessity of providing a smooth flow
of forces. Relations between the radii r, rl, and @ may be found

from the equation of the elliptic meridian. They are:.

.
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r=
a2 sin @

( )2 1/2
a2 Si112@+ b2 COS fl

~2b2
rl =

J.

When these are introduced

N@ =

(a2 sin2# + b2 cos2@)3/2

into eqmtions (18a) and (18b),

NACA TN 2612

pa2
N@=—

2b2

2 (a2 sin2# + b2 cos2@)1/2

# . (a2- b2) Sti2@

(a2 sin2@ + b2 cos2fi~~12

These formulas describe completely the stresses in the bulkhead. They

.

w

.

w

are not limited to a shell of co=tant thickness, hence the local -
stresses may be found simply by dividing by the local thickness t of
the shell:

The stresses at two points are of main interest: The center @ = 0°
and the edge @ = 90°. In the center is found a biaxial tension

which determines the wall thickness. At the edge, the force N$ trans- .

mitted to the cylindrical fuselage is independent of b and is the same
fbr all ellipsoids (and for any other shape of bulkhead with smooth .
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transition to the cylinder). The hoop force Ne depends largely on the

w ratio a/b of the axes. IF b = 0.707a it becomes zero, and if the
ellipsoid is still flatter the hoop force will be a compression. Since
it is desirable to build the bulkhead as flat as possible, this fact
deserves special attention. The compressive stress may be rather high,
but it is confined to a small zone. Figures 20(a) and 20(b) show two
examples of the stress distribution. In any case it will be wise to
provide for a stiffening ring at the connection between the bulkhead and
the fuselage.

The compressive hoop stress has still another consequence which
needs consideration. It produces an elastic deformation, which decreases
the diameter of the boundary circle of the bulkhead. On the other hand,
the diameter of the cylindrical wall of the fuselage will increase in
the part in front of the bulkhead as a consequence of the positive hoop
stress in a cylindrical shell, and will not change at all in the part
behind the bulkhead where there is no internal pressure. The deforma-
tions of the three shells look somewhat as shown in figure 21. Sime
the shells are connected to each other, such a discrepancy cannot exist
in reality but will be prevented by a system of bending stresses in the
boundary zones of all three parts. Ih boilers and other pressure vessels
these bending stresses are rather serious and means to avoid them are
desirable. In pressure cabins they maybe of some minor importance, but

* it is certainly better to eltinate them as far as possible.

The discrepancy between the two cylimirical parts is, of course,
unavoidable, but the edge deformation of the bulkhead should lie between
those of the two cylinders. That =ans, at least, that the hoop force
N@ m~tbe positive. A hemisphere would fulfill this condition per-

fectly, but as a bulkhead it would lead to poor utilization of space.
A better solution is to turn the ellipsoidal bulkhead with its convex
side toward the pressure cabin (fig. 22(a)). Then the previous for-
mulas are still applicable, but the signs of all stresses are reversed.
That is &sirable at the edge but certainly not in the center, where
compressive stresses create a buckling problem. This will be avoided
by the bulkhead shown in figure 22(b). The trouble with this shape is
that the membrane stresses at the sharp edge between the convex and
concave shells cannot make equilibrium with each other without the help
of a stiffening ring.
forces N@ shownth

This is shownby figure 23. The two meridional
era, one a tension and the other a compression, will

have the same horizontal component and thus assure the axial equilibrium
of the shell; but their radial components are both directed outward and,
therefore, camnot equilibrate each other. If a ring is provided, they
may both be transmitted to it as shown, leading to a compressible hoop
force in the ring. But here a new difficulty arises. The hoop strains
of the three parts will not fit together and will again lead to bending
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stresses. It may be that they will tuxn out to be less serious in a
particular case, but at least they are now at a place where they do not
produce quilting of the surface of the fuselage.

Bulkheads with tiproved boundary effects.- A more promising method

to avoid excessive bending stresses would be to choose another shape of
the meridian. The fact that a hemisphere gives just what is wanted, an
edge deformation halfway between zero and that of the cylindrical cabin
wall, indicates that the meridian must begin with a curvature l~a at
the edge. In order to make the bulkhead flat, the curvature should then
increase and later become very small when the center is approached.
This is schematically shown in figure 24, but the idea cannot be executed
in this form because any discontinuity in the curvature again will pro-
duce those local bending stresses that are to be eliminated.

What is needed is a curve having the same general shape but a smooth
transition of curvature. Such a curve may be found in several ways.

One is a modification of the Cassinian curves (see also reference 5).
Using the coordinates x
ure 24, the equation

(n2x2

and r in a meridional plane as shown in fig-” .-

)+r22- ~2(n2x2 - r2) = B4

.

(19) ●

describes a Cassinian curve, if n = 1. With n > 1 the curves are
flattened and for 2 < n < 3 assume a reasonable shape. The parameters
A and B must be chosen so that for x = O the ordinate becomes r = a
and the radius of curvature is rl = a. This yields

A

r

n2-1
=a—

n2+l

r

43n2.1
B=a

n2+l

The radius of curvature at the center of the bulkhead will then be

r

n3 3n2-1 -
‘l=a

2n2 - 1 n2+l
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With these data the internal forces at the most
can be found. At the edge equations (18a) and (18b)

udfl= 90° give:

29

interesting points
with r = rl=a

paNe=m

At the center eqyation (18c) must be used and

pa n3

r

3n2 - 1
=.— —

2&2-1 n2+~

is obtained.

But this is not enough. To be safe from surprises, one must have
the stress distribution along the meridian. It can be found by the
following procedure.

Assme x and from equation (19) find r, or vice versa, depending
on which will give the greater accuracy. Then compute

rl.~
dx

2nx=-—
r

n%2+%-A2

n~+r2+A2

d2r
r“ = —

~2

_ r’ (r’)2 n% kA2(n2x + rr:)-—- —
x r r (I#X2 + r2 + A2)2
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Now formulas (18a) and (18b) may be applied.

This was done for n = 2 and the results shown in figure 25 were
obtained. The hoop force Ne falls to zero and rises at the center of

the bulkhead toward the value previously mentioned. If n > 2 is
chosen, the hoop force will become negative, and very much so if n is
too great. This, of course, should be avoided.

Bulkhead for double cylinders.- In a double-cylinder cabin the two

cylinders may have their bulkheads at different stations. Between the
two bulkheads the longer cylinder must have a full circular cross sec-
tion, and its intersectionwith the first bulkhead leads to a difficult
stress problem.

This situation is eased considerably if it is possible to have both
bulkheads at the same cross section. Their shapes may then be chosen
such that they intersect in a plane horizontal curve. This will be the *

case when they are oblate ellipsoids with the ratio b:a = b’:a’. They
may then be derived by affine transformation from two spheres as indi-
cated by figure 26. ●

A reitiorcing ring must be provided along the intersection of the
two shells. It will now be shown that this ring, which has the shape
of a half-ellipse, will be stressed in its own plane only, and, with a
certain exception, will even be free from bending stresses. —

In the case of two spheres this is evident. Introduce coordinates
@, #f, and e as shown in figure 26. If the two shells are inflated -
by a pressure p, the internal forces will be

in the upper shell and

‘$=Ire’ = $pa!_

in the lower. The forces N@ for @ = 1800- a and N@’ for

d’ = 1800 - a’ act on the ring as shown in figure 27. Since

.—



asinu=a’sins’

= c

the vertical components N@ sin a and N@’ sin a’ balance each other

and the horizontal components
ducing a positive hoop force

.

combine to a uniform radial load, pro-

F=c1 ~p(a cos a+ a’ cos a’)

in the ring.

When there are two ellipsoids, the stress analysis is not so simple.
One might think of using the solution given under the section entitled
‘!EllipsoidalB@khead” for a single ellipsoid and of determining from it
the forces acting on the elliptic ring. But there is no reason to believe
that the axial symmetry assumed in deriving that solution still exists
when part of the shell has been cut away and its symmetry thus destroyed.
The clue to the solution is the idea that the ring shall be free of
bending moments, and it has only to be shown that a solution with this
property exists, that it is unique, and how to find it.

To fulfill this program, some notions of the theory of affine shells
are needed (for details see references 2, 3, and 5). They will be pre-
sented here as applied to the particular problem to be solved.

In addition to the curvilinear coordinates @,e and @t,e on the
two spheres, two systems of rectangular coordinates are now introduced: x,
y, and z for the
simple geometrical

with n = b/a. As
values of ~ (or
spheres are used.
be measured on the

ellipsoids and N, y+, and z* for the spheres.
relation between the two shells is represente& by

x = IIX*

Y=Y*

2=2*

curvilinear coordinates on the ellipsoids the
~’) and t3 for the corresponding points on the
These coordinates do not represent angles that can
ellipsoids, but each pair of values @,f3 defines

The
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clearly one point on the shell, and this is all that coordinates are
expected to do.

A shell element is cut out of the upper sphere by two meridians e
and e + de and by two parallels @ and @ + d#. It has the area

When it is projected on the planes (Y*,z*), (z*,x*), and (x*,y*), the
projected areas are found:

CIAx*= dA* sin @ cos e

dAy*= CIA*sin @ sin e

dhz* = dA* Cos fi

The element of the bulkhead shell is simply the projection of the
element dA* on the ellipsoid. Both have the same pro~ection on the
yz.plane, but the other two projections are reduced in the ratio n:l:

dAx = dAx*

= dA* sin @ cos e

‘Y =ndA* Y

.12u*sin@stie
s.

dliz= n dAz*

=&A*cos$

.

When the ellipsoid is inflated by an internal pressure p, the force
acting on the element is p dA and has the rectangular components p dAx, .

p dliy,and p dAz parallel to the axes x, y, and z. This load pro-
duces internal forces transmitted at the four sides of the shell .
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element dA. On each side of the element this force lies in a tangential
plane to the shell and may be resolved into a normal and a shear com-
ponent. Something better can be done: Oblique components parallel to
the coordinate lines @ = Constant and e = Constant canbe used.
These forces divided by the length ds# or dse of the line element

@ N@, and N@e, as indicated in figure 28.are called N ,

A simple relation between these forces and a certain system of
internal forces N

$*’ N9*, and N@e* in the sphere will.now be

established. These forces must, of course, lie on tangents to the
sphere, and they will be chosen in such a way that they have the same
projections on the-yz-plane as the corresponding forces in the ellipsoid.
Then both will have the same components in the directions y and z,
but the x-components of the forces N in the ellipsoid will equal n
times the x-com~onents of the forces N* in the sphere.

The forces N* of the sphere will be in equilibrium with a load
which has the same y- and z-components as that applied to the ellipsoid,
but l/n times its x-component.

c
If the load components per unit area dA* of the sphere are denoted

by PX*, PY*, and Pz*~

1-

px* dA* .*pux

pz* dA* = p dAz

6 p:~*co6@

.

.
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and hence the loads per unit area of the surface of the sphere sre

PX*” P: sin @ cos e 1
}

PZ*=P:COS6

(20)

If the forces set up in the spherical shell by this load can be found,
it is only necessary to project thereon the tangential plane of the
ellipsoid and to refer to the unit length of the ellipsoid’s line element
and then the forces in the ellipsoidal bulkhead will be obtained,

To make the stress analysis for
the loads given by equation (20) are
fi, ~, and Z* as shown in figure

x’+= -PX* Sti e

the sphere along
transformed into
28:

+ PV* Cos e

.

w

conventional lines,
the components

.

p [a2 - b2)
=.

2ab
sin @ sin 2e

@ = (px* cos ~+ py*sin6) cos @ - pz* sin~

= p(a2 - b2)

2ab
cos @ sin @(l + cos 2f3)

(z* = px* cos e + py* )sti e SIn @ + pz* cos @

= *~2 + (a2 - 1b2) sin2@(l+ cos 20)
.

.
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&

.

These expressions have the form

P = YO*+ Y2* cos 2e

F = ZO* + +* COB 28

showing the harmonic constituents of orders O and 2.

The first term on the right is a load with rotational symmetry:

YO* =
~(a2 - ~2)

2ab
Cos @ sin $

ZO* = &~b2+(a2 - .2) sin2@]

Simple formulas, which will not be reproduced here, lead to the internal
forces:

‘$*=%’
.~

2

Ne* = Neo*

1

(21)

[
.2_#+(a2-
211

b2)sin%]

N@* .0 J
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These formulas are.valid for
lower sphere it is necessary

the upper sphere
to write simply

of a, b, and @, respectively.

The second harmonic of

X2*

y2* =

the load,

p(a2- b2)
=-

2ab

p(a2 - b2) ~os

2ab

of radius a. For the
a’, b!, and @’, instead

p(a2 - b2)
%’= *b ‘f”2@

$

may not be handled so easily. It leads to forces which depend also on
a sine or cosine of 2G and may be written as

‘$*
= N~2* COS 29

%* = ‘e2
* Cos 2e

N#e* = N@e2* sin 28

The basic formulas connecting N *@ , N02*, and N~@2* with the load

components %*, Y2*, and %* may be found in the literature (refer-

ence 2, pp. 37 to 44, or reference 3). They lead to & solution hivi~
two free constants for esch of the spheres.. One constant in each Pair

may be determined from the condition that the stresses are finite at
@= Oand$’ =0. The other two are still to be determined. In this
way are obtained

.



NACA TN 2612 37

for the
another

p (a2 - b2)
N@2* = Zb +

M c..N@e2* = - ~

c

2(1 + Cos @2

d- c
2(1 + Cos @)2

upper shell and corresponding formulas for the lower, containing
constant C’.

From these forces the ring receives a radial load

(dN 2* cos a +N@2*’ cos a’) cos 28, a vertical load

(@N 2* sins -N#2*’ sti al)cos 2e,
(@

@2*’) sin2e,and a shear load N e2* + N
b

positive as shown in figure
of influencing these forces

. The first thing to do is to
This yields the equation

29. The two free constfits give the opportunity
in such a way that the ring is free of bending.
make the vertical load vanish at every point.

N@2*sina-N@2*1 sins’ =0

When the expression

geometric relations
is obtained:

just given for N$2* is introduced and some simple
mentioned before are used, the following equation

c sin a

(1- cosay-

The second equation in C and

c’
sin a’

=0 (22a)
(1 - cos a’)2

c’ must express the fact that there
is no bending in the plane of the ring. Under this condition the ring
has only an axial force F, which, of course, will be a function of e.
From the equilibrium of the ring element (fig. 30) two relations are
found:

(@CN2 * cos a + N@2*’ cos at) Cos 2e = F

(@c N z’ + N@2*’ ) sin 2e = ~
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From the first one it is possible to write F = F2 cos 29, and, elimi-

nating F2 from both equations,

N#2* COS

When the expressions
agaj.nintroduced and
relations, this will

flCL+N2*’COSU’+ ~(N#82*+ N@e2*’)= O

found for the internal foqces of both shells are
then simplified by appropriate use of geometric
yield the second equation for C and C’:

(1-2 cos.cL)+C, (1- 2cos a’) =3p(a2-b2) sin(a+ a’) (=)
c

(1 - COSU)2 (1- COSU’)2 b sin a’

These two equations, when solved in general terms} yield

Introducing
expressions

c
= 3P(a2 - b2]

b

this into the
for the upper

(1 - cos CL)2sin (a + a’)

sin u + sin a’ - 2sin(a+a’)

formulas for the internal forces, the following
sphere are found: ._

3sin(a+a’) 7 (1- maCA I
{[

p(a2- b2) ~+
~g2*“ ~b

sinu + sinu’ - J“ “J2 sin (cL+cL’)(1+ cos@)2

N*2*=-$ {[
p(a2- b2) co~~+

1

,Sin(a+d)l:;::::;j ’23)
Ssin(a+ a’)

2b sina + sina’ -

N*2*. -

{[

p(a2- b2) ~os% +

2sin(a+.atJ\J;~~~E}

Ssin(a+a’)

2b sina + slna’ -

These and those in equations (21) are the forces set up in the
spherical shell by the fictitious load (20). The last step necessary

.

.

.

.
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is to find from these forces the real forces in the ellipsoidal bulk-
head under the uniform air pressure p.

The
are

The center of the lndkhead has the coordinates @=goo, e=oo.
internal forces are here psrallel to the yz-plane and, therefore,
the same in the sphere and the ellipsoid:

~@o* + N@2* co’ 00

g+

{

p(a2 - b2) ~ + p s~ (~ + ~’~(1 - Cos ~)2

2 2b sina+sinat- 12 sin (a+ at)

pa2 + 3p(a2 - b2) Fin (a + ~’fl(1 - cos a~2

K 2b sina+sina*- 2 sin (a+ at)

= .Neo*+ Ne2* COS 0°

_ - 3P(a2 - h2)pa2 [( I
sin a+a~) (1- cosa)2

2b 2b sina+sina~-2sin(a +a:)

N#e ‘ N@o* + N@2* sin 0°

On the edge 0 = tgoo . Eere the force Ne has x-direction and
must be reduced by multiplying by n = b/a. The force N$ is parallel

to the yz-plane; therefore, the forces on corresponding line elements
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of sphere and ellipsoid are the same but the line element is reduced
.

in the ratio b/a, hence the force per unit length of this element
increased by a factor a/b. The shear is zero. Thus on the edge of

—
#

the ellipsoid:

(~N
b @O* + N@2* Cos

pa

[

pa(a2-b2) ~
—-
2 2b2

180° )

—

+
3 sin (a+’af)

1

(1 -Cos a)z

sina+sin at-2 sin (a+at) (l+COS 9)2

p(2b2- a2)a - 3pa(a2-b2) sin (a+u’) (1-COS U)2
2b2 2b2 sin a+sin a’ - 2 sin (a+a’) (l+cos @)2

Ne .

=

=

An
ence is

:(N60* + Ne2* COS 180° )

pb2 + p(a2 - b2)

ZT- 2a r
i3in2@+ cos2@ +

L

3 sin (a+a’)

1

(1- cosa)2

sina+ sina~ - 2 sin (cz+a’) (1+ cos@)2

_ + 3p(a2 - b2)pa Sin (a + a’) (1 - Cos Ct)z

2 2a sin a + sin a’ -2sin(a+ ~’) (l+cospf)2

example for the distribution of these forces over the circumfer-
shown in figure 31. In the top and bottom zones the forces are

rather uniformly distributed, but there are marked peaks at the junction
of the two ellipsoids. This fact indicates that stresses in shells
should be determined carefully.

.

.
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In all the preceding formulas, the denominator

9

sina+sinu’ .2sin(u+ a’)

appears. It may happen that a and ~’ have such values that this
denominator is zero, in which case the formulas would yield infinite
stresses. This indicates that in such a case the combination of the
two spherical or elM.psoidal shells is capable of an inextensional
def&mation and that rigidity can onlybe secured by giving the neck
ring sufficient rigidity against bending in its own plane. If plane
bending of the ring is to be assured, then equation (22a) between the
two constants C and C’ still must hold. The bending moment in the
ring then becomes independent of the choice of C. Equation (22b)
becomes useless and must be replaced by the condition that the internal
forces assume finite values. This leads to C = C’ = O.

.

.

.

The somewhat lengthy analysis of the double bulkhead has been
reproduced here not only because of the particular problem under con-
sideration but as an example of two important features of thin shells:

(1) The fact that the stiffening ring along the intersection of
two parts of the shell is usually free of bending moments ,

(2) The use of affine relations

Nose of

General rules.- The nose of the

for the solution of shell problems

Plane

fuselage may have so many various

shapes that not much can be said in general about its stress analysis.
In high-speed planes aerodynamic consideration may lead to shaping the
nose as a perfect surface of revolution. If it iS psi% Of the pres-
surized cabin, it may be treated with formulas (18a) and (18b) for
stresses in such shells; if the cabin terminates in a bulkhead back of
the nose, all that has been said about the rear’bulkhead is applicable.

The modern passenger plane usually has a nose which looks like that
shown in figure 32. The major part of it is a shell, but the smooth
surface is interrupted by many windows. In such cases a shell analysis
as described in the preceding sections will, in general, be too com-
plicated for practical purposes. As regards the stress analysis of such
structures, the following facts should be kept in mind:

(1) All large uninterrupted parts of the metal skin will act as
shells, whether they are fixed on a solid framework or only stiffened
by rings and stringers. The stiffeners which are connected to the shell,
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although absolutely necessary for the introduction of local loads and
as a buckling reinforcement, are obstructions to a smooth flow of stress
in the shell proper_and lead to quilting and to tensile stresses in
rivets.

(2)All edges of such shell parts, for example, along the windows,
must be stiffened by edge members. It is always advantageous to shape
these edge members after plane curves. With rare exceptions they will
not then be subjected to bending in space, but they must offer resistance
to bending in their plane and require the corresponding rigidity, bracing,
and support.

(3) There iS no need formaktig cross sections circular. Any curved
shell can resist an internal pressure, but, of course, the stress dis-
tribution will be less uniform and may easily have local zones of com-
pression if the cross sections are far from circular.

(4) Areas of extremely low curvature should be avoided. Membrane
shell theory leads to extremely high stresses In such parts and, owing
to these stresses, the panel bulges out, thus increasing the curvature
and reducing the stress. In addition this bulging invariably leads to
some plastic deformation at the edges of the panel and, therefore, to
a permanent bulging, which is undesirable.

Elliysoid with three different axes.- A general ellipsoid is a kind
of a shell which probably will not occur as part of a pressure cabin.
However, its membrane forces are easily computed and may give an idea
of what may happen in other shells of noncircular cross section.

Consider an ellipsoid having the three half-axes a > b > c and
being subjected to an internal pressure p. In order to find the
membrane forces, establish relations between them and those in a sphere
of radius b under a certain load. This follows the same lines as the
theory for the double bulkhead in the section entitled “Bulkhead for
Double Cylinders.”

In rectangular coordinates x*, y*, and z* the sphere has the
equatio~

X*2
+Y *2 + Z*2 = b2

and in coordinates x, y, and z the equation of the ellipsoid is

.

w

—

.4

.
—

.
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As surface coordinates on the sphere the amgles @ and e are used
as shown in figure 33. Through the relations

x= : x*
b

Y=Y*

z c z*=-
b

each point of the sphere corresponds to a point on the ellipsoid. By
attributing the same values of @ and 8 to both, a system of’coordi-
nates is established on the ellipsoid. Its lines # = Constant are
parallel ellipses in horizontal planes. Its lines e = Constant are
ellipses in planes through the z-axis.

The shell elem=nt on the sphere has the area

dA* = a d@a sin @ d@

and its projections on the coordinate planes are

dAx* = W* sin # cos e

dAz* = dA* Cos @

The projections of the corresponding element of the ellipsoid are

dAx = ;dAx*

~=~uy’

dAz =:aAz*
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Multiplying this by p yields the components
on that element. The corresponding forces on
then

b
Px*dA*=~PdAx

NACA ~ 2612

of the force p dA acting
the spherical element are

b
==p~dA*sb@cOse

py*dA*=P~

ac dA* sin # sin e.pT

P~
*dA*= :pdAz

.$P;U*COS$

From these relations are found px*, py*, and pz*, the loads per unit

area of the sphere, in directions x*, y*, and Z*.
with the usual components, X* in direction e, Y*
and Z* in the radial

F = (px*

(z* = px*

direction by the formulas:

F= -PX* sin e + PY* cos e

cos e + PY* sin 6) cos @ . pz*

)cos e + %* sin e sin @ + pz*

IntrOduC@ PX*, PY*, and pz*, they yield:

They are connected
in direction #,

*

.
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z Y. + Y2 Cos 26

E&+z2cos26

The corresponding
(reference 2, pp.

menibraneforces may be
37 to 39). They are:

found from well-bown formulas

b

)E
Cos 28

()+pca-~
=F a

COS2ficos 2e

To find the
elements is
A, B, and

At the

N$e* ()pca~
‘T E-8

COS @ sti 2e

of the corresponding line
only for the three points

forces in the ellip60id, the ratio
needed. The results are mentioned
c.

point A @ = 90°, 6 = 0°, md

.

.
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Ne ( )=pbbc+ac-~
2cabc

(.~b2 ab2

2T+ a-7
)

At the point B @ = 90°, e = 900, and

‘,=++$-$)
At the point C @ = 0° and @ may have any value. When e = 0° is
assumed arbitrarily, then N~ lies in the xz-plane and Ne, in the>
yz-plane, and the internal forces are:

If (a2 + b2)c2 < a2b2, the force Ne at the points A and B becomes

a compression. The other four formulas always yield positive forces
when a>b>c. These results may serve as a first orientation of what
is to be expected in shells of noncircular cross section under the
action of an internal pressure. —

.

.
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PLATE PRaIWEMS

Stresses in Thin Flat

Plane plates are not very desirable as

Sheets

parts of the wall of a pres-
sure vessel, but it often is not possible to avoid them. Therefore, the
stresses set up in them by a lateral pressure p will be considered
here.

If such a plate were thick enough, it might carry its load by
bending stresses as does the reinforced concrete floor slab of a
building; however, the skin of an airplane is much too thin to carry
an appreciable load with tolerable bending stresses. Its stress system
is a superposition of bending stresses and of the stresses in a flexible
skin.

The subject of this section willbe such a thin skin of rectangular
shape. Its stress problem is essentially nonlinear. In two dimensions
it is so involved that all theoretical and expertiental effort spent
on it up to the present is still far from giving a complete answer to
all questions which the engineer might ask. Therefore, a discussion is
first presented for the one-dimensional problem which, in many cases,
will give useful information for practical purposes and beyond that will
show the general features of the stress system present in the two-
dimensional case.

Thin sheet stressed in one dfmension.- Consider a thin plate as

shown in figure 34. In the x-direction it has the span 1, and the
sides x = t2/2 are supported in such a way that not only the deflec-
tion w but also a displacement u in the x-direction is prohibited.
In the direction of the y-axis the plate is supposed to be long enough
to make the conditions at the shorter sides immaterial.

For the purpose of stress analysis cut a strip of unit width out
of this plate. Because of the end conditions, the lateral load p will
produce a direct stress u along the strip, which is necessarily
independent of x. If the deflection w is large enough, this stress
will be capable of carrying the load.

This canbe seen on an element of length dx cut from the strip
(fig- 35). The condition of vertical equilibrium is:

()otd~ +pdx=o
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It yields the relation

NACA TN 2612

which indicates that the strip must deflect into a conmon parabola:

()plz ~ 4X2
w= —-—

80% ~2

with a maximum at x = O:

f=g (24)

The horizontal displacement in the direction of increasing x may
be called u. The strain in the strip is then

At the center x = O, u = () from s~etry, At the supmrt
x= 2/2, therefore,

U=uo

is-l P2Z3
=—-—

2E 480%2
(25)

Since an unyielding support U. = O was assumed, this equation may be

used to find u for a given load:

L

.

“A”—

.
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.

From equation
in particular.

49

(24) the final expression for the deflection may be found,
that forthemaximumw=f at x=O:

r.~33P1
‘4E~

These two formulas represent nonlinear relations, owing to the quadratic
term which represents the influence of the deflection w on the strain c.
If this term should be neglected, as it is in many other cases, no
reasonable result at all would be reached. The nonlinearity is, there-
fore, an essential feature of this problem.

Since the plate deflects, there will be a bending moment

d2~
M=-EI—

&2

Et3p= .—
120t

r

t2 3 alJ2pt2
=——

6 22

This is incompatible with the assumed support and has been neglected in
the preceding formulas, but this may safely be done if M is small as

compared with the moment p22/8 which would be necessary to carry the
load by beam action. This-condition may be
less form:

brought into-the dimension-

For a pressure cabin with p = 7 psi and duralumin with E = 107 psi
this yields

For the airplane, the assumption of unyielding supports goes too
far. The edges x = Constant of the plate are kept apart by stiffeners
in the x-direction. When they are not riveted to the skin, the problem
is still one-dimensional and may be represented by a flexible strip and
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a strut as shown in fi~e 36. The flexible strip is exposed to the
load p and deflects under it; its ends are kept apart by a strut of
cross section Al, which has a compressive force N = -u’t;the supports

are such that they allow the corresponding elastic deformation of the
bar.

When the cross section of one stiffener is A, and the distance
between stiffeners is d, then the area Al = A/d corresponds to a

strip of unit width of the plate.

When the horizontal displace=nt
(midspan), equation (25) may again be

the end, but nok ~ must correspond

shorter by NZ/EAl:

‘o=-

Introducing this into equation (3),

u is assumed to be zero at x = O
used for the displacement U. at

to the fact that the strut becomes

Crtz

q

(26a)

for the stress
equation (24):

Comparing

in the plate. The greatest deflection follows then from

(26b)

these two formulas with those which were obtained for
nonyielding supports, it is seen that they become identical for Al -+ w.

Since t/Al is more likely to be equal to 1 than O, the assumption of

nonyielding supports may lead to errors of about 25 percent, overrating
the stress and underrating the deflection. It seems, therefore, not
worth while to spend much effort on the two-dimensional problem if this
effect is not tdsen into account. However, the simpler formulas are
good enough for estimating the order of magnitude of a and f and
for discussing the influence of the bending stiffness of the plate.

The formulas (26a) and (26b) are sufficient if the sheet panel Is
part of a flat bulkhead. But in most other cases the wall, consisting
of’the sheet and its stiffeners, has to transmit an internal force such

.
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as Nx or N@ explained in the section entitled ‘tCircularCylinder.”

These forces may be due to the over-all bending of the fuselage, to the
action of the internal.pressure on other parts of its wallj and to other
causes. When the sheet is flat and bulges out, the distribution of this
force on sheet and stiffeners is no longer governed by the formulas (5).
It maybe found by adding an axial force P to the strip amd strut
system of figure 36 (see fig. 37).

If u again indicates the stress in the sheet, the force in the
strut is

N=P

and the horizontal displacement at

‘o =

-at

x . 2/2 must be

Nl-
2EA,

-L

Equating this to the expression (25),
●

This
then

(27)

may easily be solved in any given case. The deflection f follows
from eqyation (24).

Some results are shown in figure 38 in dimensionless variables. The
values for the parameter pZ/Et have been chosen as rather extreme in
order to cover the whole field of practical interest. For most of the
diagrams, tjll~= 1 has been assumed, but one of them shows the trend

for a variation of this parameter.

The diagrams show the influence of the force P. They emphasize
that a solution of the two-dimensional problem which disregards this
influence cannot yield more than a rough approximation of the real air-
plane problem, even if it were an exact solution of the simplified
problem.

Thin sheet stressed in two dimensions.- Asswning a sufficiently

thin plate, the formulas developed in the preceding section are exact
for infinitely long rectangles. It is probable that they will.yielda
good results if the ratio of the sides is 1:4 or even 1:3, but when
the rectangle approaches a square, they become inapplicable.

.
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.

To find out how the results must be modified in such cases, consider
a square plate framed by four equal stiffeners (fig. 39). When the plate
bulges out under a lateral load p, stresses u will be set up in two -

directions, which are denoted ax and ay. The stiffeners will receive

compressive forces. The plate in their immediate vicinity must have the
same strain and hence a compressive stress. The distribution of ay

along one of the edges must, therefore, be as shown on the figure.

At the center of the plate ax = rsy. When two strips are cut out

along the coordinate axes, each one will carry one-half of the load p,
and the curvature will be half of that which would follow with this
same u from the one-dtiensional theory. When the horizontal strip is
followed toward the right edge of the platej.the stress ‘Y will

decrease and finally become negative. Where it passes zero, the one-
dimensional theory will yield the correct curvature, and closer to the
edge the curvature of the square plate will .begreater than that of a
single strip. A single strip was seen to deflect as a parabola, The
profile of the sqmre plate must, therefore, be far from a sine curve,

.

and results computed on this assumption must, therefore, be interpreted
with some reserve. .

When a diagonal of the plate is followed ax always equals ay,

but both stresses decrease the father away they are from the center.
The curvature in both directions must, therefore, become greater, and
a sharp fold may be expected toward the corner. But at least there is
a region where CTx and cry become negative and are no longer capable

.

of carrying any load at all. Here even the thinnest plate must have
essential bending stress. The thinner the plate is, the smaller this
region will be, and the sharper the curvature will become. It follows
that the highest stresses will occur on or near the corners. They may or
may not be responsible for the ultimate load of the plate, depending on
the possibility of smoothening the peak by local plastic flow, but they
are certainly responsible for permanent deformations which produce that
quilting of flat ‘panelswhich makes airplanes unsightly and is not much
appreciated by the aerodynamicist.

There is little numerical information available on square and rec-
tangular plates. Some papera (references 6.and 10) are mentioned in the
references of this report. One of them, reference 6, contains rather
complete material for plates with unyielding supports (fig. 34); however,
this paper is based on the assumption that the profiles of the deflected
plate along both axes are sine curves.

—
In particular, this assumption

is also made for the lengthwise profile of long plates (1:4), where it
leads to an overrating of the influence of the support at the short ●

sides. The results for the long plate, therefore, do not check with
the one-dimensional theory. However, the two-dimensional problem is

.
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so complex that a critical use of the diagrams of Moness (reference 6)
is the best that can be recommended at this time.

Thermal Stresses in Window Panes

The windowpanes of a pressure cabin are not only exposed to the
difference in pressure between the interior of the cabin and the free
atmosphere but also to a considerable difference in temperature. The
bending stresses due to the pressure may easilybe found from text.
book formulas, but the thermal stresses require some discussion.

Consider a plate of uniform thickness, sjmply sup~rted along its
edge. Assume that no load is applied but that there is a difference T
between the temperatures of its faces. When the temperature is increased
by T, a positive strain

will occur in every direction, u being the coefficient of thermal
expansion. When only one side of the plate is heated, c is the dif-
ference in strain between both sides, and this difference leads to a
curvature

in every direction. The middle surface of the Qate is then deformed
into a small part of a sphere of radius l/K.

If the plate is circular, this is all that happens. The window
will slightly deflect to the warmer side, and no thermal stresses will
be set up. But if the plate is rectangular, the deformed shape will.
no longer fit on the support, and, in order to make it fit, the support
will exert forces on the plate and these forces will produce bending
stresses.

Formulas for the bending moments which correspond to these stresses
will now be established and discussed. In doing so, the following nota-
tions willbe used (fig. k):

Xjy coordinates

w deflection

%+ bending moments

M= twisting moment
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‘x

K

()Y’W
curvature in x-direction

z

“

.

{
E@

bending stiffness , _.\

The stresses and deformation due to heating of the upper face of
the plate will be-built up in three steps. The first one has already
beep done, namely, the application of the temperature difference to the
free plate, resulting in a uniform bending without stress.

In the second step this deformation is completely removed bY aPPlying,
along all four

of appropriate

edges of the plate,

size. They produce

%=

constant external bending mom&~- M. ‘“

bending moments

in the plate which are constant everywhere and in
the curvature ~x of the plate is related to the

well-known formula:

all directions. Now,
bending moment by the

‘x=-
K(l:V2)@x-‘%)

In this case, it yields

%=-
%

K(l+ V)

To remove the thermal deformation, tcx must be made equal to -aT/t

and therefore

Under the combined action of the temperature T and the edge
nmments ~ the plate is perfectly plane and maybe attached to its

supports. Now the third step may be done: The condition of simply
supported ed&es must be realized EU@ the ed~ load M. compensated by
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adding an edge load -~. This is a problem of @ate theory and may be

solved in the following way:

When there is no lateral load, the deflection w of the plate must
satisfy the well-known differential equation (reference 11):

Introducing the sun of the two bending

abw ~
‘g’

muments

M=&+~

as an auxiliary variable, this equation may be split into two equations of
the second order:

These equations can be solved one after the other
condition can be found for each one.

Consider, for example, the edge x = a/2 of
bending mom?nt -~ is applied there and

%=-MO

is obtained. Since the edge is supported, w = O
amd, hence, also

(28a)

(28b)

because a boundary

the rectangle. The

for alJ values of y
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Introducing this into the elastic law

‘x=-K(=’‘9
N$=-K(~+v~)

1

it can be concluded that ~ = -YMo on this edge and, hence, that

M= -(1 + v)%

A similar reaaoning may be made for the three

(30)

otheredges.

The solution of equation (28a) with the boundary condition (30) is
extremely simple. It is a constant, M = -(1 + v)%.

Now equation (28b) may be attacked. Introducing the result just
obtained,

%w&=M2

axp a? K

and the boundary condition is, of course, w = O.

This differential equation with this boundary condition is known
in the theory of torsion of a bar having rectangular cross section. All
that is necessary is to translate the solution known there into the
terminology of the plate problem.

The solution is:

(~+~+hb2 m
~ co~h ~

)
my

“o b2

I

Cos —
(-~) 2 .,

b
w =—-

K 2 F n3
(31)

nfia
1,3,5,... cosh —

2b
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One may easily verify that this expression satisfies the differential
equation and that w = O for y = kb/2. At the other two edges,

x= *a/2, equation (31) yields:

The sum
tion of

% (#w ,9=—. —
K 8 T

in the parentheses
the function

happens to be the Fourier series representa-

()##y2
—— -—
~b2 g 2

valid in the interval -b/2 S y s b/2, and, therefore, the expression
in parentheses vanishes at eve~–point of the two edges x = Constant

of the plate. This proves that the solution really satisfies the
condition w = O on all four sides of the rectangle.

The bending moments can now be found easily by introducing the
solution (31) into the elastic law (29):

% +
4(1- v)

l-t

w

E
1,3>..

(
.

-1

n-1

,)T

nrx
cosh —b Cos Y I

I

n Cosh* I

1
nfixco~ ~

k(l-v) m
E

a cosh ~

1- (-1) 2
b

SC 1,3,...
nfia

n cosh —
2b

These are the bending mo~nts produced in step three. To obtain the
bending moments for the original problem, the moment % of the second

. step must be added; the first step makes no contribution to the stresses.
When ~ is expressed by the temperature difference T, writing

.
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~ = K(l + v)$

Eat%
=
12(1 - v)

finally

[ 1~-~(-1)+‘Os’* c:a~Mx = & Eat% m

1,3,... n cosh —
2b

The solution would not be complete

- cosh ~ ‘0S ~
(-1) 2

nyca
n cosh —

.

2b

.
without having the twisting moment ~.

Step two does not make a contribution to it, but it can be obtained from -
equation (31) alone, using the formula

Jfxy=
8%

-K(l-v)—
axay

There is obtained

The formulas for the nmments are the solution of the problem as it
was formulated at the beginning. It is now necessary to discuss this
result and to draw some practical conclusions from it. .

.



NACA TN 2612 59

At the edges y = ~b/2

nmy
Cos — = o

b

for all odd integers n and hence

~=()

That the moment ~ vanishes corresponds to the assumed simple support.

That Mx does not do so is due to the fact that the edge is kept straight

in spite of the applied temperature difference.

At the edges x = ~a/2 t~re ~ the corresponding result

hq=o

but to obtain it the Fourier series

n-1-w

z (-1)
21 mry

~ Cos —b
1,3,...

must be added up which yields Ye/4 for all.points of the
interval -b/2S y~b/2.

For interior points of the
formulas Mx and My has very

a square plate,

.

.
can be found easily.

plate, the series
good convergence.

Mx = My

1 Eat%=—
24

appearing in the
For the center of
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The
twisting
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most interesting part of the solution is the formula for the
moment KY. When x <a/2, the quotient of the two hyperbolic

functions decreases exponentially with increasing n and produces a
good convergence of the series; but on the edge x = a/2 this beneficial
influence is lost and the series converges slowly. If x = a/2 is
kept and the corner y = b/2 is approached, the series becomes

and this series is divergent or, if this expression is admitted, yields
the value ~. This singularity of the twisting moment which, of course,
appears at all four corners, is of practical tiportance. It is true
that real objects always find a way to avoid infinite stresses. Here
the finite thickness of the plate, the finite width of the zone to which
the reactions are applied, and the elastic yielding of the support may
act in this wayj but, nevertheless,
reveals the fact that stresses near
and that it would be wiser to round
the good will of the structure.

the
the
the

shgulsrity in our solution
corner will be extremely high
corners liberally than to trust

Buckling of Cylindrical Panel

The metal skin of the pressurized cabin is subdivided into rec-
tangular panels by rings and axial stiffeners (stringers). In every such
panel, the wall is subjected to a hoop stress

pressure p.

ad due to the cabin

Additionally, there may be an axial stress ax (tension

or compression) and a shear stress T (fig. 41). The hoop stress
“@

increases the shear stress T required for buckling in the presence of
a given ax.

For this buckling problem, Eomm (reference 7) has worked out two
diagrams which give the critical shear T as a function of the hoop
stress a@ assuming etther Ux = O (case “a”, fig. 43(a)) or

ax= a@/2 ‘case “b’” ‘ig” 43(b)‘“
Of course, the ratio between the two

stresses ax ~d ap my have any other value between or beyond these

limits, but, since the influence of ax on the critical shear is not

large, the choice made by fiomm is sufficient.

ltromm’spaper gives only a short description of the method used for
solving the problem, referring for more details to his earlier papers on
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stability problems in cylinders. A still shorter outline will be given
here of the laborious procedure and an explanation of the diagrams
resulting from it.

The object of the graphs is a rectangular panel, cut from a circular
cylinder of radius a and supported on its edges. Its length is sup~sed
to be much greater than its width so that the buckling is not influenced
much by the support on the curved sides.

When this panel is subjected to the cabin pressure p it will bulge
out, again forming a cylindrical surface, but with a smaller radius r<a.
This radius r may easilybe found if the lengthwise edges of the panel
are fixed. In the deformed state (fig. 42) a simple consideration of
equilibrium yields for the hoop stress the relation

(32)

On the other hand, the length of the arc of radius r and chord b is

1 () #
=bl+—

24r2

the length of the same arc before deformation

20
b2

()
=bl+—

24a2

and hence the hoop strain is

()b211=—— .—
24 # a2

When ax = O (case “a”),

is

()Eb2 1 1=— —-—
24 r2 a2
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Equating this to the value from equation (32),

In case “b)” E has simply to be replacedby 2E/(2 -v).

In connection with the buckling problem, the relations between p
and r must be expressed by a certain set of dimensionless variables
used there. Using Kronm’s notation, the curvature of the undeformed
cylinder is described by the parameter

that of the deformed shell, by

12(1 - V2) bk
%’

Srl
~

(33)

.

.

and the pressure p, by the parameter

kp = :(1 - 1# $
The relation Just found between p and r reads then in case “a”:

@(.-%) =57+%

= 1. 035$?

and in case “b”:

UJ U-uo)=(l-$m$%n
=0.880$

.

.
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After this preparation, the buckling problem for a cylinder of
radius r may be solved. This may be done by either of the two standard
methods. The differential equations for the components u, v, and w
of the displacement may he fornmlated and solved, or the expression for
the variation of the potential energy may be established and equated to
zero for every possible variation u, v, or w of the displacemmts
compatible with the boundary conditions. In both cases the displace-
ments are introduced as double Fourier series, and the buckli~ condi.
tion finally assumes the form that a determinant of infinite order must
he equal to zero. For the numerical evaluation, this determinant is
approached by a section of moderate size, not necessarily situated at
its upper left corner. The diagrams in figures 43(a) and 43(b) have
been computed in this way.

For the application of these diagrams, it is necessary to know the
boundary conditions assumed. Since the plate was supposed to be long in
the x-direction, no conditions were fixed for the curved edges
x = Constant. On the straight edges, foux conditions must be given.
The following choice was made: Displacement parallel to the edge u . 0,
radial displacement w . 0, clamping moment (see fig. 8) M@ = O, and

additional hoop stress afl= o.

The first three of these conditions appear to be reasonable at first
Sight. Also the last one is quite usual in buckling problems of this
kind, but it seems to contradict the assumption of unyielding supports
made for the determination of r. This contradiction may be easily
resolved. The underlying idea is that the panel is part of the wall of
a cylindrical fuselage and has many neighbors which are in the same
situation. When the pressure p is applied to these panels, they will
all develop the same hoop stress u@. Although the stringers usually
have but little bending stiffness, they cannot deflect in the v-direction
(fig. 41), because the forces a& app~ed to them from both sides are in
equilibrium. When buckling occurs, the situation is quite different. A
system of folds is formed in each panel$ and with them additional hoop
stresses ad are set up. If the stringer were very stiff, correspondi~
forces

@
u t would be transmitted to it, and they would not be the same

from both sides but would pull at some places to one side and at other
places to the other side. When the stringer is weak, as is usual, it
will deflect so much that the stresses become almost zero, and the
safest assumption for the determination of the buckling stress is the
one mAde.

The use of the diagrams may nowbe described. From the given data

@ and ~ ae computed according to equations (33) and (34) and

located in the diagram. The values ~ are found at the left side of
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the graph and refer to the more-or-less horizontal curves.
some values are given along the upper edge. The curves to

NACA TN 2612

For
w )

which they

refer are almost-vertical and ~oin at their lower end, more or less

tangentially, a vertical line bearing the same number on the @ scale.
From this relation it is easyto interpolate more curves ~ and to

find the values ~ for those curves which are not numbered in the

graph. It also appears that in the right-hand half of the diagram the

curves are practically identical with the vertical.coordinate lines.

From the point which corresponds to the given values of ~ and

follow a horizontal line toward the left and read there T/@.

multiplied by the reference stress

~2 ~ t2
~* =—— —

31-V2b2

it yields the critical value of the shear stress T.

If, incidentally, ax
IIII

corresponds to one of the two cases a

or “b,“ it is necessary to consult only one of the diagrams. For
other values of ax it is necessary to use both and then find the final

value T by interpolation. Since the influence of ax is not great,

even an extrapolation will be possible, within moderate limits.

Stanford University
Stanford, Calif., September 7, 1950

.

.
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Cylindrical shell.
.

Figure 2.- Part cut from a cylindrical shell subjected
pressure p.
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Figure 3*- Part of cross section through a

=s=
cylindrical shell

.

.
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2.
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with strtigers.

Figure 4.- Factor k for longitudinal stress in skin of stiffened shell.
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Figure ~.- Cross section through a pressurized
cylindrical shells.

cabin
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Figure,6.- Detailof figure~:
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consisttig of two
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Forces at junction of two cylinders.
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Figure 7.- Longitudinal section through cylindrical

rings.

.

.

shell and reinforcing

.
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Figure 8.- Element of cylindrical shell,

=s=
showing internal forces.
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Figure 9.-

I IWq&
0

Extensional

I

rigidity of shell against cross section of stringers.

(a) Closely spaced rings, heavy stringers.

(b) Rings far apart, light stringers.

Figure 10.- Typical distribution of bending moment ~ and hoop force l!$

.

“

in shell between two rimgs.
. .

.
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Figure Il.- Yielding connection between shell and ring.

\
r“

Figure 12.- Cyhdrioal shell having a door opeti
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Figure 13.- Longitudinal force ~ and hoop force Nfl in a cross section

through a cylindrical shell having a door opening.
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Figure ti.- Shell of revolution.

r “
I

.

Figure 1S.- Axial section through a shell of revolution.

.
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Figure 16.- Element of a shell of revolution.

(a) Complete structure.

Nq

+- -

I

(b) Cylinder,

Figure 17.- Axial section

bulkhead,

through a

and rimg taken apart.

cylindrical shell and a bulkhead.
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Figure 18.- Meridionalforce N$ and hoop force Ne in two
bulkheads. Upperhalf,extremelyflat shape;lowerhalf,
dishedshape.
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Figure 19.- Notation for an elliptic meridian.

I I

b/Q=0.6
I

L/==0.0

I~— _L
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Figure20.- Meridionalforce N@ and hoop force Ne in two ellipsoidal

bulkheads.
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(a)
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I
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pressureis applied.
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(b) hggerated scheme of deformation when pressure p is applied to
cabim at left of bulkhead.

Figure 21.- Continuous cylindrical shell having an inserted bulkhead.

I
1P

+“ -
I

Figure 22.-Possible shapes of bulkheads.



78 NACA ~ 2612

Figure Z3.- Forces between parts of the bulkhead shown
of figure 22.

t

r

=FP’-
.

in right-hand sketch .

Figure 24.- Meridian of a bulkhead, built up from circles.
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Figure26.- Bulkheadfor doublecylinders,consistingof two
(left),and correspondingspheres(right).
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Figure 27. - Forces acting on the ring between two spheres shown in figure 26.
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Figure 28.- Affjne shell elements.
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Figure 29.- Sign convention for forces transmitted from spherical shells
to connecting ring.

.

.

Figure 30.- Element of ring showy in figure 29.

.
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Ne/pa.

IL~ = 0.5

Figure 31.- Distribution of circumferential force Ne and normal force Np

at edge of ellipsoidal bulkhead shown in left half of figure 26.



Figure 32.-Nose of a pressurizedcabin.

t
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(a) Sphericalshell.

I
z

.
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●

(b)Ellipsoidalshell.

Figure33.- Sketchesof shells.
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Figure
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34.- Plate strip subjected to lateral pressure.

Figure 35.- Sideview of an elementof a plate strip.
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P

Figure 36.- Plate stripundergoinglargedeflectionand straightstiffener.—. —

P

I w

.

.m.

Figure 37. - Same system as h figure 36, but subjected to an additional
horizontal load.
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Figure 38.- Stress
load, for three
three ratios of
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I lo%@, IO%%A,
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and deflection of plate strip, plotted aga~t axial
dMferent lateral loads and (h central figure) for
skin to stiffener.
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Figure 39. - ‘l%o-dimensionalproblem of plate with large

?4%

deflection.
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Figure 40.- Rectangularplateand plateelement.
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Figure ~.- Cylindrical panel.
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Figure 42.- Section through cylindrical panel
of internalpressure
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\ /’ =!5=
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before and after
P.

application
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(a) ax = O.

Figure 43.- Dtagrem ficm reference 7 for buckling lomi of cylitiical
panel shown In flgme 41.
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(b) Ux = a~,2.
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Figure 43.- Concluded.




